Bush Encroachment Monitoring Using Multi-temporal Landsat Data and Random Forests
نویسنده
چکیده
It is widely accepted that land degradation and desertification (LDD) are serious global threats to humans and the environment. Around a third of savannahs in Africa are affected by LDD processes that may lead to substantial declines in ecosystem functioning and services. Indirectly, LDD can be monitored using relevant indicators. The encroachment of woody plants into grasslands, and the subsequent conversion of savannahs and open woodlands into shrublands, has attracted a lot of attention over the last decades and has been identified as a potential indicator of LDD. Mapping bush encroachment over large areas can only effectively be done using Earth Observation (EO) data and techniques. However, the accurate assessment of large-scale savannah degradation through bush encroachment with satellite imagery remains a formidable task due to the fact that on the satellite data vegetation variability in response to highly variable rainfall patterns might obscure the underlying degradation processes. Here, we present a methodological framework for the monitoring of bush encroachment-related land degradation in a savannah environment in the Northwest Province of South Africa. We utilise multi-temporal Landsat TM and ETM+ (SLC-on) data from 1989 until 2009, mostly from the dry-season, and ancillary data in a GIS environment. We then use the machine learning classification approach of random forests to identify the extent of encroachment over the 20-year period. The results show that in the area of study, bush encroachment is as alarming as permanent vegetation loss. The classification of the year 2009 is validated yielding low commission and omission errors and high k-statistic values for the grasses and woody vegetation classes. Our approach is a step towards a rigorous and effective savannah degradation assessment. * Corresponding author The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2, 2014 ISPRS Technical Commission II Symposium, 6 – 8 October 2014, Toronto, Canada This contribution has been peer-reviewed. doi:10.5194/isprsarchives-XL-2-29-2014 29
منابع مشابه
Forest Disturbance Mapping Using Dense Synthetic Landsat/MODIS Time-Series and Permutation-Based Disturbance Index Detection
Spatio-temporal information on process-based forest loss is essential for a wide range of applications. Despite remote sensing being the only feasible means of monitoring forest change at regional or greater scales, there is no retrospectively available remote sensor that meets the demand of monitoring forests with the required spatial detail and guaranteed high temporal frequency. As an altern...
متن کاملMulti-Temporal Assessment of Mangrove Forests Change in the Coastal Areas of Bushehr Region Based on Landsat Satellite Imagery
Continual access to precise information about the land use/land cover (LULC) changes of the Earth’s surface is extremely important for any sustainable development program in which LULC serves as one of the major input criteria. In this study, a supervised classification was applied to three Landsat images collected in 1986, 1998and 2018, providing mangrove forests change data in the coastal are...
متن کاملAutomated Methods for Atmospheric Correction and Fusion of Multispectral Satellite Data for National Monitoring
The Earth Observation for Sustainable Development of Canada’s forests (EOSD) project monitors Canada's forests from space. Canada contains ten-percent of the world’s forests. Initial EOSD products are land cover, forest change, forest biomass, and automated methods. There are more than 500 LANDSAT TM or ETM+ scenes required for a single coverage of Canada’s forests. Multi-temporal analysis usin...
متن کاملA Review on Bush Encroachment Effect on Cattle Rearing in Rangelands
Bush encroachment is an increase in woody plant density typically resulting in impenetrable thickets, suppressing palatable grasses and herbs. Moreover, bush encroachment is a globally observed phenomenon. Besides, increasing the density of unpalatable shrubs and trees has reduced the carrying capacity and threatens the sustainability of grazing animal production, especially in arid and semi-ar...
متن کاملQuantifying Multi-Decadal Change of Planted Forest Cover Using Airborne LiDAR and Landsat Imagery
Continuous monitoring of forest cover condition is key to understanding the carbon dynamics of forest ecosystems. This paper addresses how to integrate single-year airborne LiDAR and time-series Landsat imagery to derive forest cover change information. LiDAR data were used to extract forest cover at the sub-pixel level of Landsat for a single year, and the Landtrendr algorithm was applied to L...
متن کامل